Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anim Biotechnol ; 34(9): 4510-4522, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36639141

RESUMO

The main of this study was to evaluate the effect of supplementation of tropical tree foliage in ruminant diets on the in vitro fermentation, bacterial population, volatile fatty acids (VFAs), and enteric CH4 production. Seven experimental diets were evaluated: a control treatment of Pennisetum purpureum (T7) and six treatments of P. purpureum supplemented (30%) with the foliage of Neomillspaughia emargiata (T1), Tabernaemontana amygdalifolia (T2), Caesalpinia gaumeri (T3), Piscidia piscipula (T4), Leucaena leucocephala (T5), and Havardia albicans (T6). The T2, T7, and T5 treatments had the highest (p < 0.05) digestibility of dry matter. Overall, supplementation increased (p < 0.05) the concentrations of propionic and butyric acid and decreased acetic acid. Methanogenic bacteria decreased (p < 0.05) in T1, T2, T5, and T6. Ruminococcus albus decreased in T1, T2, T3, and T5 and Selenomonas ruminiantum increased in T3. Fibrobacter succinogenes increased, except in T5. Methane production decreased (p < 0.05) in T1, T4, T5, and T6. The supplementation with Leucaena leucocephala, Tabernaemontana amygdalifolia, Neomillspaughia emargiata, Piscidia piscipula, Havardia albicans, and Caesalpinia gaumeri is a potential alternative nutritional strategy for ruminants that results in positive changes in VFAs profile, a decrease on CH4 production and methanogenic bacteria, and changes on fibrolytic and non-fibrolytic bacteria composition.HIGHLIGHTSTropical tree foliage supplementation increased propionic and butyric acid and decreased acetic acid concentrations.Fibrolytic, non-fibrolytic, and Methanogenic bacteria were selectively modulated with the supplementation of tropical tree foliage.The enteric methane (CH4) production decreased with the supplementation of tree foliage.The supplementation of Tabernaemontana amygdalifolia and Leucaena leucocephala had the highest digestibility and is a potential alternative nutritional strategy for ruminants.


Assuntos
Fabaceae , Árvores , Animais , Fermentação , Rúmen/metabolismo , Dieta , Suplementos Nutricionais , Ruminantes , Ácidos Graxos Voláteis , Ácido Acético/metabolismo , Ácido Butírico , Metano/metabolismo , Ração Animal/análise
2.
Trop Anim Health Prod ; 51(4): 893-904, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30554366

RESUMO

The objective of this study was to evaluate the influence of tree foliage species supplemented in ruminant diets based on Pennisetum purpureum on the in vitro digestibility and fermentation, microbial biomass synthesis and enteric methane production. Seven experimental diets were evaluated, including a control treatment based on P. purpureum (PT) grass, and six additional treatments supplemented with 30.0% foliage from Neomillspaughia emargiata (NE), Tabernaemontana amygdalifolia (TA), Caesalpinia gaumeri (CG), Piscidia piscipula (PP), Leucaena leucocephala (LL) and Havardia albicans (HA). A randomised complete block design repeated in two periods (block) was used. The highest gas production (P < 0.05) was recorded in treatments TA and PT (237 and 228 mL g-1, respectively). The highest in vitro digestibility of dry matter (IVDMD) and organic matter (IVOMD) (P < 0.05) was recorded in the control treatment PT (57.9% and 66.1%, respectively). Treatments LL, NE, TA and PP promoted greater microbial biomass synthesis (290, 223, 220 and 213 mg g-1, respectively) (P < 0.05). The proportion of propionic acid also increased in these latter treatments and in treatments CG and HA (P < 0.05). Additionally, treatments LL, PP, NE and TA decreased methane production (25.8, 29.5, 30.6 and 31.8 L kg-1 of digested dry matter, respectively). In conclusion, supplementation with L. leucocephala, P. piscipula, N. emargiata and T. amygdalifolia in ruminant diets based on P. purpureum is one feed alternative that can promote greater efficiency and synthesis of microbial biomass, increase the proportions of propionic and butyric acid and decrease the production of enteric methane by 15.6 to 31.6%.


Assuntos
Dieta , Fabaceae , Fermentação , Metano , Pennisetum , Rúmen , Animais , Bovinos , Amônia/metabolismo , Ração Animal/análise , Biomassa , Dieta/veterinária , Suplementos Nutricionais , Digestão , Microbioma Gastrointestinal , Metano/metabolismo , México , Folhas de Planta , Polygonaceae , Rúmen/metabolismo , Rúmen/microbiologia , Ruminantes , Árvores
3.
Plant Dis ; 91(10): 1365, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30780539

RESUMO

Zea mays and Sorghum bicolor are important crops for animal and human nutrition worldwide. In the Central Highland Valley of Mexico, both crops are extremely important, and research is aimed toward increasing yield, disease resistance, and crop adaptation from 1,900- to 2,700-m elevation. In a 3-year field breeding experiment (2004 to 2006), leaf blight and vascular wilt symptoms were frequently observed in contiguous plots of maize and sorghum crops in Montecillo, Mexico and maize plots in Tecamac, Mexico. To identify and characterize the causal agent of these symptoms, isolations were conducted on leaves from areas where healthy and diseased tissues converged. Leaf sections of 1 cm2 from both crops were disinfested, placed on casamino acid-peptone-glucose (CPG) medium, and incubated at 28°C. After 48 h, only yellow colonies were observed and 12 isolates were selected for further characterization. Physiological and biochemical tests indicated that the isolates were nonfluorescent on King's B medium, and API 50 CHE (bioMérieux, Marcy l'Etoile, France) revealed that they were negative for gelatin hydrolysis, indole production, acid production from raffinose and positive for utilization of glycerol, D-glucose, mannitol, arbutine, esculine, salicine, cellobiose, maltose, melibiose, D-fucose, and D-arabitol; all characteristics of Pantoea agglomerans. Further identification of these isolates was accomplished by DNA analysis. For DNA analysis, 1.4-kbp fragments of the 16S rRNA gene were amplified with primer set 8F/1492R (3) and sequenced with U514F/800R universal primers (2). Five sequences were obtained and deposited in GenBank (Accession Nos. EF050806 to EF050810). A phylogenetic tree was constructed using the UPGMA method (mega version 3.1). Results of the phylogenetic analysis grouped the species P. ananatis, P. stewartti, and P. agglomerans into three clusters. The five unknown sequences were grouped into the P. agglomerans cluster. There was a 98 to 99% similarity of the five 16S rRNA gene sequences with P. agglomerans strain type ATCC 27155. Pathogenicity of the 12 isolates was confirmed by injecting 108 CFU mL-1 of inoculum into stems of 3-week-old maize cv. Triunfo and sorghum cold tolerant hybrid (A1×B5)×R1 seedlings in the greenhouse at 28°C and 80% relative humidity. Also, seedlings were inoculated with water, nonpathogenic isolates of P. agglomerans from maize (GM13, and HLA1), and not inoculated as negative controls. Three replications were included for each isolate and control. All test strains developed water-soaked lesions on juvenile leaves at 8 days postinoculation and were followed by chlorotic to straw-colored leaf streaks and then leaf blight symptoms at 3 weeks postinoculation. All negative control seedlings did not develop symptoms. In addition, the 12 isolates were infiltrated at 107 CFU mL-1 into tobacco leaves that displayed a hypersensitive response at 4 days, indicating the presence of the type III secretion system (1). Isolates were reisolated, and the 16S rRNA gene fragments were 100% similar to their original isolate sequences. P. agglomerans has been reported to affect other crops, including chinese taro in Brazil (2007), onion in the United States (2006) and South Africa (1981), and pearl millet in Zimbabwe (1997); however, to our knowledge, this is the first report of P. agglomerans associated with leaf blight and vascular wilt symptoms in maize and sorghum in the Central Highland Valley of Mexico. References: (1) J. Alfano and A. Collmer. Annu. Rev. Phytopathol 42:385, 2004. (2) Y. Anzai et al. Int. J. Syst. Evol. Microbiol. 50:1563, 2000. (3) M. Sasoh et al. Appl. Environ. Microbiol. 72:1825, 2006.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...